International Journal of Emerging Multidisciplinaries: Mathematics

Corresponding Author

Anwar Saeed

Document Type

Research Article

Subject Areas

Applied Mathematics and Computations


Variable magnetic field, Maxwell equations, Reynolds number, HAM, Batchelor number, RK4.


The unsteady, incompressible electroviscous fluid flow has been investigated with thermal energy transmission across two parallel plates. The upper plate is in motion, while the lower one is stationary. The flow is governed by the Navier-Stokes equations, which are combined with the Maxwell equation. The system of nonlinear PDEs is simplified to a system of ODEs along with their boundary conditions using Von-Karman's transformation. For the problem's analytic solution, the homotopy analysis method (HAM) has been used, and the result is compared to the Runge Kutta method of order four and latest computational technique parametric continuation method (PCM) to determine the validity of the scheme. It has been noted that the outcome is reflected with the best settlement. Interest physical constraints are graphically illustrated and briefly discussed in relation to velocity, temperature, magnetic strength profile, skin friction, and Nusselt numbers. The axial velocity of the fluid reduces by the action of Reynold numbers R1. The magnetic profile intensity is reduced as the Batchelor number rises, while the magnetic strength is boosted as the magnetic Reynolds number R3 increases.

Receive Date

2022-09-12 23:57:37

Publication Date