International Journal of Emerging Multidisciplinaries: Mathematics

Corresponding Author

Christophe Chesneau

Authors ORCID


Document Type

Research Article

Subject Areas

Applied Mathematics and Computations


Asymmetry, convexity, correlation measures, extreme value copulas, tail dependence.


Copulas are mathematical tools used to model the dependence structure between random variables. Extreme value copulas specifically focus on capturing the tail dependence, which refers to the dependence structure between random variables when they exhibit extreme or rare events. The Pickands dependence functions are special convex functions that play a crucial role in characterizing extreme value copulas; they quantify the strength of their tail dependence. The creation of new Pickands dependence functions enhances our understanding of complex interdependencies, enabling more accurate modeling and risk assessment in diverse systems. In this article, a theoretical contribution to the topic is provided; an original strategy for generating new Pickands dependence functions based on existing ones is developed. The resulting Pickands dependence functions have the features of using the functionalities of standard functions (exponential, trigonometric, hyperbolic, etc.) and/or depend on several tuning parameters of various natures, which are quite uncommon in the literature. Two new extreme value copulas are derived from our findings. Their asymmetric and tail-dependent flexibility are emphasized. Numerical and graphical illustrations are given to support some theoretical facts.

Receive Date


Accept Date


Publication Date